ONE-POT PHOTOCHEMICAL SYNTHESIS OF NAPHTHO[1,2-g]QUINOLINE-7,12-DIONE DERIVATIVES A NEW ROUTE TO AZA-ANALOGUE OF BENZ[a]ANTHRACENE-7,12-DIONES

Kazuhiro MARUYAMA,* Seiji TAI, and Tetsuo OTSUKI Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

Substituted naphtho[1,2-g]quinoline-7,12-diones were synthesized regioselectively by one-pot photochemical reaction of 7-bromo-6methoxyquinoline-5,8-dione with 1,1-diarylethylenes.

Although a variety of quinones derived from polycyclic aromatic compounds have been well investigated, quinone derivatives of naphthoquinolines containing a nitrogen atom in the D-ring of benz[a]anthracene skeleton have never been reported so far. Naphthoquinolines, an aza-analogue of benz[a]anthracenes, would be of potential interest because of their expected biochemical and physicochemical properties. 1 We wish to report here a facile one-pot regioselective photochemical synthesis of substituted naphtho[1,2-g]quinoline-7,12-diones from 7-bromo-6-methoxyquinoline-5,8-dione and 1,1-diarylethylenes.

As a typical example, a benzene solution (400ml) of 7-bromo-6-methoxyquinoline-5.8-dione 1 (1 mmol) 2 and 1.1-diphenylethylene 2a (2 mmol) was irradiated with a high pressure Hg arc lamp (300W) in the presence of pyridine (1 mmol) at room temperature for 1 h. After complete consumption of 1, purification of the reaction mixture by column chromatography on silica gel and subsequent recrystallization gave yellow needles; 5-phenylnaphtho[1,2-g]quinoline-7,12-dione 4a, mp: 242-3°C, yield 30%, Mass: $m/e=335(M^+)$, IR(KBr): 1680, 1660, $1300cm^{-1}$, $NMR(CDCl_3)$: δ ; 9.80ppm (1H,d, J=8.5Hz), 9.09 (1H,dd,J=5,2Hz),8.64 (1H,dd,J=8,2Hz), 8.40 (1H,s), 8.00 (1H,dd,J=8, 1.5Hz), 7.5-7.9 (3H,m), 7.52 (5H,s), UV $\max(\text{CHCl}_3)$: 246nm (loge=4.07), 310 (4.13), 373 (3.13), 427 (3.30).

The spectral data of 4a are all compatible with 5-phenylnaphtho[1,2-g]quinoline-7,12-dione. Similarly, other 1,1-diarylethylenes 2b-f gave successfully the corresponding naphtho[1,2-g]quinoline-7,12-dione derivatives 4b-f in a regioselective manner in the photochemical reaction with 7-bromo-6-methoxyquinoline-5,8-dione 1 (see Scheme I and Table I). The structure of 4a was further confirmed by analyzing the ¹H-NMR chemical shift changes of the ring protons induced by addition of Eu(fod)₃. Although the intermediate 3 was not isolated in this work, ³ the regionselective condensation ⁴ to naphtho[1,2-g]quinoline-7,12-diones 4 would be understood in terms of the two-step reaction mechanism as shown in Scheme I.

Thus, the photochemical reaction of 7-bromo-6-methoxyquinoline-5,8-dione 1 with 1,1-diarylethylenes 2 provides us a facile regionelective one-pot synthetic route to naphtho[1,2-g]quinoline-7,12-dione derivatives 4 as a new member of quinonoid compounds.

Table I. Yields and Physical Properties of Naphtho[1.2-g]quinoline-7,12-diones

Starting Materials.			Irradiation	Products					
Quinone	Ethylene		Time (h)						mp(°C)
1	2a;	R=H	1		$R_{-}^{1}=R_{-}^{2}=H$		30	yellow needles	242-3
1	2b;	p-0Me	10	4b;	R ¹ =2-0Me,	R ² =p-0Me	17	orange needles	256-7
1	2c;	m-0Me	2.5	4 c;	3-0Me,	m-0Me	44	yellowish orange needles	244.5-5
ļ	2d; ∼	o-0Me	3	4 d;	4-0Me,	o-0Me	20	red needles	269-70
ļ	2e;	p-Me	1.8	4 e;	2-Me,	p-Me	40	yellow needles	>300
ļ	2f;	m-Me	1.3	4f;	3-Me,	m-Me	24	yellow needles	243-4

References

- 1) M. Das and R. Bhattacharya, J. Chim. Phys., 57, 947 (1960).
 - J. Koutecky and R. Zahradnik, Coll. Czech. Chem. Comm., 28, 2089 (1963).
 - M.J.Shear and J.Leiter, J. Natl. Cancer Inst., 2,241(1941).
- 2)C.C.Cheng, T.K.Liao, and W.H.Nyberg, J. Heterocyclic Chem., 13, 1063(1976).
- 3) The formation of \mathfrak{Z} was suggested at the earlier stage by inspection of the course of the reaction with TLC.
- 4) K. Maruyama, T. Otsuki, and K. Mitsui, J. Org. Chem., 45, 1424 (1980).
 - K.Maruyama, M.Tojo, H.Iwamoto, and T.Otsuki, Chem. Lett., 1980, 827.